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GEOMETRIC-OPTICS THEORY FOR COHERENT SCATTERING OF MICROWAVES
FROM THE OCEAN SURFACE

INTRODUCTION

In 1961 C. 1. Beard (1) found that experimental values of the coherent reflected
field |E/EgT'| are larger than the values given by the generally accepted theoretical formul-

lil = 2(27g)2
E6r|sA = exp [-2(27)°]

for values of g = (0, sin y/)/\ greater than 0.1 radian. Here E is the average electric

field due to the “sea surface” §,, Eg is the field due to the direct wave, I' is the smooth
sea reflection coefficient, 0, is the standard deviation of the sea-surface elevation, ¥ is the
grazing angle, and ) is the electromagnetic wavelength (Fig. 1).

A\ AN
A U VA VA I
Fig. 1—Ray reflection off of a random sea surface

The expression |[E/E5I"|S4 is the Gaussian theoretical curve (sometimes called the
“roughness factor’’) first published by W. S, Ament (2) in 1953. (Ament claims that
the result was derived by Pekeris and, independently, by MacFarlane in the 40%.) Since
then Ament’s result has been obtained by numerous other workers. (See for example
Ref. 3.)

Manuscript submitted December 14, 1973.
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BROWN AND MILLER

The disagreement between theory and experiment has been unresolved for over a
decade; and it has been agreed generally that theoretical models based on geometric
optics could not yield a result more powerful than that of Ament.

In this report we show that the coherent reflected field is given by
E 2 2
=1 = exp[-22n8)°) ][ 2(2m8)%]
E;T N

for 0 < g < 0.3, where [y(x) is the modified Bessel function Jy(ix). We derive this

result using geometric optics, assuming a spherical wavefront incident on a Gaussian
collection & of sinusoidal surface waves. Further, |E/EgT"| S agrees with Beard’s experi-
mental curve (Fig. 2), with a systematic difference in g of 10%. Beard has estimated that
wave elevations were within 10% of their correct values.

We show how IE/Eg I'|S4 is obtained, assuming a plane wave front incident on a
Caussian collection $4 of horizontal strips.

BASIC ASSUMPTIONS AND DEFINITIONS

Suppose that T is an isotropic emitter of electromagnetic waves with wavelength A
situated at a distance h, above the mean sea surface and that R is an isotropic receiver
which is at a distance h; above the mean sea surface. We take the mean sea height to be
equal to zero. Suppose that the horizontal distance between T and R is d, where d is
small enough that the earth’s curvature need not be considered (Fig. 3). We assume

10 I T
— THEORY
[ 5] \o Eo
W 05 \\ B
= N EXPERIMENT
NS (BEARD)
\ \\‘
\.\ -~ -
THEORY 3~ _ S
(AMENT) ~
0 l r.-.aﬂ--__‘
0 0.1 0.2 03
(ensm

Fig. 2—Comparison of theoretical and experimental results
for coherent forward scattering

that the sea surface can be described by some collection of functions§ . To be more
specific, we assume that at any given moment the functions which we need to describe
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Fig. 3—Geometry of ray reflection

the sea surface locally are in$ . Let T’ be the image of T with respect to the tangent
line through P, a typical reflection point on the sea surface. Let (An;, Any - hy) be the
coordinates of 7', so that the coordinates of P’ are (An, /2, An,/2). Note that when P is
on the s axis and we have specular reflection, 7, = 1y = 0, i.e., the image of T through
the s axis is at T'S(O, -hy). When we have this situation, let ¥ be the angle TP0. It is
easy to see that d tan § = h; + hy. We remark that we will be using two independent
coordinate systems, viz., the s, y system and the n;, n, system with origin T;. Note that
the coordinates of O in the s, y system are (0, hy) in the n;, n, system.

In this work we use geometric optics, that is, we assume that only waves reflected
from a favorable slope will reach the receiver and that the local angle of incidence will
equal the local angle of reflection. Further, we assume that all reflections occur in the
s, y plane. We also will assume that the sea surface is ‘“‘slightly rough,” so that over a
long period of time the collection of points T, the image of T' = 7, will form a closed
connected set which has no holes, that is, a closed, simply connected region. It will also
be assumed that T, is an interior point of .

The following definitions will be helpful:

£ =Rk + hy - Ay
E2=2;i2'>"’2
g3 = d - Ay,
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2nr,
Y%= Y
7 = -2mcos ¥
Yy = -2m sin v

Note that r, is the specular distance RT,. The distance RT’ in general is r = (¢} + £3)1/2,

We will show later that under suitable conditions T; is the center of symmetry of §p
and that if (Any, Any) €§ 1, then

|£'11.l<1, lMZ.|<1,
d hy

so thaty p is bounded away from T and R. Let R be the smallest rectangle which con-
tains§ 1 and whose sides are parallel to the coordinate axes. Then in view of the previous
inequalities, R is a neighborhood of T,, i.e., the dimensions of R are small compared to

d and hy. We then are justified in expanding r in a Taylor series about 7, = 7, = 0 and
dropping terms higher than those of first order in 7, and n,, giving

2nr
"%ttt - (1)

If we define the row vector ¥ = {7, 7;] and let = [’,g] , we can write Eq. (1) as

2nr
Nt (2)
CALCULATION OF THE ELECTRIC FIELD DUE TO A SINGLE REFLECTED RAY

The electric field E due to a single reflected ray is given by

6 2n6 2
E = Es-’_-ll‘lexp ("%l) exp I:-(-';\E + argl"> i] , (3)

where I is the complex reflection coefficient and Eg is the electric field due to the direct
wave which travels path length 8 given by

82 = d% + (hy - hy)?.
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We consider now the quantity §/r and state the following.

Observation: If 2yd<1 (< means less than or of the order of),

and
hy
-+ <1,
d

then
5
- =1,
r

Proof: Using Eq. (1),
[42 + (hy ~ hy)2)112
[d2 + (hy + hl)ﬁj—m_— Any cos ¢ - 7\172 sin

a2 + (h2 - ]11)2 1/2
[dz *(hy + "1)72}

6—
- -

- Amy cos Y - Ay sin Y
(4% + (hy + 1)) [ + (hy + 1))2]TR2

Now

An,
[d2 + (hy + kl)2]1/2

)\nll
,<,T‘“

and

e l . ' ]7\'72,
< 2 < <1;
'[d2 t (hy + h R]1/2 hy + hy hy
therefore

—— A

r d2 + h? + h2 + 2k,

However, 2hy/d < 1 and hy/d <1 imply that 2hyhy/d? <€ 1, so that 8/r ~ 1,

We then are justified in writing Eq. (3) approximately as

2nd 2
E = Eg|T'| exp (-—;\r—l) exp[-('—%r—-fargr)i} .

(4)
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It is not hard to see that I = I'(n;, np). Smceﬁvr C R and R is small, we will make the
simplifying assumption that I’ = l‘(O 0) = I'(Y) in § p. For the surfaces we consider later
the point (0, 0) will be the center of symmetry of§ 1, so that I' = I'(Y) can be viewed as
some average in 7. Combining Eqs. (2) and (3) and defining

27b
Ey = E5IT(¥)| exp (—:—x) exp (-7pi) exp [-i arg ()]

gives
E = Ejexp (-ivn). (5)

We remark that 2hy/d < 1 and h1/d < 1 imply that (ky + hy)/d < 1/2, ie., tan y < 1/2,
so that y < 27°. Hence Eq. (5) is valid provided that

Anl '
|

el <

<1,

and

v <27,

A RESULT DUE TO AMENT

Suppose N 4 is the class of functions y = H, where the sea elevation H is distributed
normally with standard deviation oy and |2H| € min {h;, hy}. This is equivalent to the
class of functions Ament used in Ref. 2, which is the class H(s) where H ‘“‘varies so slowly
with s that, in the neighborhood of each s, the surface is approximately a plane parallel
to the s axis.”* It is easy to see that for the class§ 4,

*An equwalent way of defining the class & , is the following:
Let l be a disjoint collection of open intervals such that

=1
where S is a set of measure zero and R is the real line. Define
1 ifx € ';
K(X) =
0 ity € ’;
Let {g 1 be a sequence of real numbers, and define a simple function

100 = 2, aKx).

=1

Let \ 1 be the class of all simple functions (see Fig. 4).
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g ?Jl}
r = (AN, An2)ing=0,ny= E

so that in this case ® = ¢ a degenerate rectangle. Hence 1 = y,1p = -4%H (sin Y)/A,
so that from Eq. (5) we have

A
- E cos (41rH’\sin W)+ i sin (4wH :in w) )

The average electric field E due to the class § 4 is given by
Hy 2
1 E(H) exp <— % E—) dH
) F = -Hy %
Hy

{ 2
[ [15)
..Ho

3 If we substitute Eq. (6) into this equation, it is easy to see that we get

H, 2 :
J‘ exp (— -;- 5—2—) cos (“—H;B-i)dH
'Ho H

0 H
"0 1 H2
J exp <- EF)dH
"Ho H

To evaluate these integrals, we will let Hy = +o0 . The error we make will not be large,
since the cosine function is bounded and the distribution tends to zero quickly when oy
is small. Performing the required integrations and noting that |Ey| = |Eg(y)] gives

Fig. 4 —Typical simple function
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E 270, sin 4’)2]
- = 2 \_H 7 7
Erls, P [ ( 7/ | @

Ament derived this result for a plane incident wave and the class § 4. We have made the
assumption that the incident wave front is spherical. However, if we are considering a
plane wave, then ' = I'(y/) in 1, and we have Ament’s resuit.

CALCULATION OF THE IMAGE DUE TO THE CLASS &

We assume now that the sea surface can be described by a Gaussian collection § of
sinusoidal waves y = H sin [(2n/u)(s + §)], where the sea-wave peak height H = 0 is
normally distributed, ¢ is the sea-wave wavelength, and § is the sea-wave phase, which is
distributed uniformly.

Let 8= (2m/u)(s + § ), and note (Fig. 5) that the coordinates of P are (s, H sin ).
The image § 7 is determined by the following three equations:

El(d - §) = Eg(h) - H sin B); (8)
27HE, cos B = phm ; %
2nH(An; - 2s) cos B = p(An, - 2Hsin 8). (10)

p P

—~ m
—| 5 |e= s —
m
— - B —

Fig. 5--Individual sinusoida! wave showing amplitude and phase

Equation (8) is the condition that T', P, and R lie in a straight line; Eq. (9) is the con-
dition that the line through P’ and P is perpendicular to the line through 7° and T; and
Eq (10) is the condition that the slope of y = H sin 3 at P is equal to the slope of the
hine through P’ and P.

We now state the following observation.
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Observation: If

snsH oH 2h
€1, — <1, 22 <,
ok g a =

<1, (11)

then § 7 is approximately an ellipse and

2H 2nh 2H (. 2nh
g = {(7\171,7\722)“71: _}\__;_2, cos B, 1, = ~ (slnB - -—;—2- coswcosﬁ)} ,

where § € [0, 21}. (0 means “the boundary of.”)
We remark that the relations (11) are equivalent to the following:

2h,

H h, +h
M— <1, —2 <1, -1 2
u d -~

d

<1, (12a)

4nsH

cosf + hﬁsinB <1, g€ {0,27]. (12b)

H 2
K = \2 (21r— cosB) -
M ok 2

The relations of (11) imply those of (12) since s 3 s/hy 2 1 (for example, when
H =0, s/hy = d/(h; + hy) > 1, so that certainly /2s/h, >"1, and 2s/h, > 1; thus

H H
V2 <21r-—)<<1, 21r7<1, K <1,
m

Relations (12) imply (11), for when 8 = 7/2, we have 2H/h2 <1,
When f = 0,

H\2
K = I 2(21r-—) JAmH|

hzy

Hence we must have

H\2 4nsH
2| 2n— <1, <1
K hyut

or

which implies that
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But
H
21— <1,
u
and so
s
— <1,
hz

a result which is not always true. Hence

4nsH
hout

Further, if we eliminate the parameter 8, we have

2H\2
L) ={(7\171,Mz)|(—>“) = n'An},

where
_EV + cot? Y cot Y
2nh,
A=
cot ¥ 1

Proof: From Egs. (9) and (10) respectively,

H A 1
21— cosf = My , (13)
u hy 9. An,
h2
and
A
M2 2 ing
H h, o
2mr— cosf =
H Ay 2
h2 h2

Eliminating Ml [hy from these equations gives

A
_n_z. - E. sin f8
21r£ cosf} = hy 2
H An, 2
2n— - —2) cosf - —
u h2 h2

10

- e~
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Solving for An, /h, gives

Hence

1 o]

and it is clear then that

From Eq. (8) and (10) respectively,

An

H A
—2 = Hsinf + 21r-—-cos[3<_21. - s> ,
2 u 2

and

d - An

(HsinB - b)) + d.

Eliminating An, from Egs. (14) and (15) gives

A H 2 H
__;3 = Hsinf + (21!-‘; cosB> hy - (21!-;‘- c085> s

Equation (16) can be written as

1

(14)

(15)

(16)

(17)
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d An 1
s = (Hsinﬁ-h)(---—l-) _ \+d.
h, + h, ! d A
hy + hy
Clearly
_ﬁ?__.|<1
hy + hy ’

and since from Eq. (14)

= |21— —% <1,
Id 1r” ) cos

we can write Eq. (18) approximately as

«w
L}

" +h2(HsinB-hl)+d

cot ¥ (hy + Hsin ).

From Eqs. (17) and (19), we have

X H 2 H
——;—1 = Hginf + (Zn—“- cosﬁ) hy - (2#-; cosB) hy cot V¥

- (2#% cosB) Hcot ysinf.

Since

H .
<21r-‘-‘- cosﬁ) Hcot ysinf H sin 8

(2#% cos ﬁ) hy cot ¥ 2

and

12

(18)

(19)

(20)
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oy |
n— CO8
2 +
: IRy
H i d
21r-"- cos B |h, cot y
< (2n£) (uz.) <1,
u d
we can write Eq. (20) approximately as
An,

- = Hsinf - (Zn:-i cosB) hy cot ¥,

and so

n, = A sinf - 2nhy cot Y cosfB| . (21)
2 A K

21 \2
IA=___
e = (%)

and check that it is indeed an ellipse. The family of ellipses is shown in Fig. 6. If we
let § = 7/2, 37/2, we obtain the interesting result that 4 (Class &) N {y axis}= I
(Class §4), so thet the major axis of the ellipse (2H/A\)2 = 'An must be greater than 4H/\.

We easily can verify that

AVERAGE ELECTRIC FIELD DUE TO THE CLASS §

For a given H and f3, the electric field due to a single reflected ray is given by Eq.
(5): E = E, exp (-iyn). We easily find that

m = -‘-1-;-‘\51- sin ¢ sing ,
so that
EH,PB) = Eo exp (- %f- sin ¥ sin ﬁ) . (22)

When § = n/2, 37/2, we get Eq. (6). The physical interpretation of yn is shown in
Fig. 7.

13
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-

Fig. 6—Family of image ellipses

@

Fig. 7—Path length from an arbitrary point on an image
ellipse to the receiver, which determines phase
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We now define

f=2n
I E(H, ) d¥
B=0

Em = . 23
z (H) pm (23)
7 I ds
:- B=0
; Equation (23) gives the average elective field due to all reflections such that T' is in

351‘.
We recall that
2
B= Z(s+7)

{ H
3 and
i s = cot § (hy + Hsinp),
] so that

'2'“;5 = hycoty + Heot Y sinf + § .

Taking differentials in this last equation gives

—“-dﬂ = Hcot Y cosfdf + d§ ,
27
so that

ds = (-—‘-‘— - Hcotd/cosﬁ)dB.
2n

Hence

A p=2n 1]
J E(H, B) (-—-— - Hcot Y cos ﬁ)dB
- =0 on
EH)

f=2nm p
J‘; (ﬁ - H cot { cos B)dﬁ

=0

1)

E(H, B)cosfdf .

1 P=2n Hcoty h=2m
—-— EH, B)ydg -
- fﬁ UL fﬁ

=0

15
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But E(H, B) is a function of sin §, so that
f=2n P=2n
f E(H, B) cos B df = f E(H,B)dsinB = 0.
f=0 B=0
Hence
1 ps2n
B = [ BB,
T Jgeo

and on performing the required integration, we obtain

EH) = EOJO(%E- sin »’/) ) (24)

where J is the Bessel function of order 0. Note that 1 does not appear in Eq. (24).

Now let E be the average electric field due to the Gaussian collection of all sinusoidal
waves, i.e.,

H=H
f ° E(H) exp (-% -’ﬁ) dH

- o
5. CHe b ’ 25)
H‘Ho 1 H2
J exp (-——) dH
H=0 2 of

where 2H, <€ min {h;, hy } and oy is the standard deviation in the peak height H.
Substituting Eq. (24) into Eq. (25) gives

As before, we let Hy — +oo without making a large error, and on performing the required
integrations (and noting that |Ey| = |EgT'|), we obtain

- exp [_ < 21raH)\sin w)z ] 10{ (2naH:in "2)2:] ,

where [y(x) is the modified Bessel function Jy(ix).

E

E; I’

16
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If o), is the standard deviation of the sea elevation, then, since we have considered
sinuscidal waves, it is clear that oy = /20, (Fig. 8). Hence we can write

E] 2r9, sinw)z] [(m_,, sin w)z]
lsar xp ['2("" ) AR

T IR TR A T

el o

T

Fig. 8—Relationship between standard deviation in
peak height, 0, and standard deviation in elevation,
0, fora sinusoidal wave

We remark that the use of sinusoidal surface waves is a mechanism for obtaining a rich
source of wave-height wave-slope pairs. Further, it seems that we obtain enough of these
' pairs distributed in the right way to describe the sea surface over a long period of time.

To sum up we provide the following tabulation:

Table 1
] Coherent Field for Various Sea-Surface/Incident-Wave Combinations
3 Sea Surface Incident Wave Result
Simple functions Plane Ament: I-E?/E5 ls,
Simple functions Spherical Ament: |E/E5T| Sa
Sinusoidal waves Plane Ament-like: IE/EB I S
Sinusoidal waves Spherical |E/E5T| S

The Ament-like result is obtained by substituting oy = /20 in

E (21raH sin W)2 }
— = -2 —X e, .
ETls exp[ X
A
giving
E|l . exp [_4 (21:0,, sin w)2 }
EsTls. A

A

17
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This is justified since when the incident wave is plane, the only reflections that can occur
are off the peaks and troughs (assuming no shadowing) of the waves (Fig. 9).

Fig. 9—Reflection points for a plan incident wave

A RESULT DUE TO BECKMANN

Since the completion of this work, it has been realized that another, but different,
theoretical treatment based on geometric optics had been done previously by Beckmann
(4)*. Beckmann’s report was undertaken to try to calculate theoretically the effect of
spherical-wavefront illumination for comparison with Beard’s experimental results of the
statistics of the incoherent field scattered from a random water surface (5). In the
process of calculating the incoherent field, Beckmann also derived expressions for the
coherent field. It seems that these were not pursued at the time since the interest was
in the statistics of the incoherent field. Beckmann obtained

E K 13 12
= | = exp(-K) |1+ = 2(-;—;1{)] ,
Egrl, ~ P )[ 7 1f\3iy
; 2
K = @oflagf) ;

where | F,(1/2; 3/2; K) is a confluent hypergeometric function. We have extracted this
result from Ref. 4, Eqs. (49), (5§0), (51), and (85). Numerical computations indicate that

E |E l E

=1 <|==| <|=| foro1<g<o3.
IEGI‘ s gl TlETls &
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